http://akademia-matematyki.edu.pl/ LINK DO KURSU: http://kurs-maturalny-warszawa.pl/?p=285Liczby x, y, 19 w podanej kolejności tworzą ciąg arytmetyczny, przy
Na rysunku przedstawiono wykres funkcji \( f \). -5 -4 -3 -2 -1 0 1 3 4 5 6 7 8 2 1 2 3 4 -1 -2 -3 y x Odczytaj z wykresu i zapisz: a) zbiór wartości funkcji \( f \), b) przedział maksymalnej długości, w którym funkcja \( f \) jest malejąca. Najczęściej spotykanym wykresem jaki widzimy na co dzień jest najprawdopodobniej wykres temperatury na dane dni. Załóżmy, że nasz wykres jest właśnie takim wykresem, czyli że funkcja \( f \) jest funkcją która danemu dniu przyporządkowuje temperaturę. a) zbiór wartości funkcji \( f \) Zbiór wartości to zbiór wartości, jakie przyjmuje funkcja. W naszym przypadku możemy to utożsamić z pytaniem o to, jakie temperatury będą w dniach od \( -4 \) do \( 8 \). Widzimy, że temperatury osiągane w tych dniach mają wartości od \( -2 \) do \( 3 \). Zaznaczymy te wartości na osi wartości (osi \( Oy\)) -5 -4 -3 -2 -1 0 1 3 4 5 6 7 8 2 1 2 3 4 -1 -2 -3 y x Zbiór wartości funkcji \( f \) to zbiór \( \langle -2, 3 \rangle \). b) przedział maksymalnej długości, w którym funkcja \( f \) jest malejąca Pytanie możemy utożsamić z innym - o największą liczbę dni, przez które temperatura się obniżała. Widzimy na wykresie, że temperatura obniżała się raz, od dnia \( -2 \) do dnia \( 2 \). Zaznaczymy ten przedział na wykresie -5 -4 -3 -2 -1 0 1 3 4 5 6 7 8 2 1 2 3 4 -1 -2 -3 y x Przedział maksymalnej długości, w którym funkcja \( f \) jest malejąca to przedział \( \langle -2,2 \rangle \). Drukuj
Rozwiązanie 5 zadania "Biblioteka podręczników" z egzaminu maturalnego z informatyki (poziom rozszerzony) 2016 w programie MS Access 2007.Link do arkusza: ht
Matura Maj 2011, Poziom Rozszerzony (Arkusze CKE), Formuła od 2005 - Zadanie 12. (2 pkt) W reaktorze o objętości 1 dm3 przebiegła przemiana zgodnie z równaniem A + B ⇄ C + D. Do reakcji użyto 2 mole substancji A i nadmiar substancji B. Po ustaleniu się stanu równowagi stwierdzono, że w mieszaninie poreakcyjnej znajduje się 0,4 mola substancji A. Stała równowagi tej reakcji w temperaturze prowadzenia procesu jest równa 1. Oblicz, ile moli substancji B użyto do tej reakcji. Wynik podaj z dokładnością do liczby całkowitej. Korzystanie z informacji Wykonanie obliczeń chemicznych związanych ze stałą równowagi reakcji ( Przykład poprawnego rozwiązania początkowa liczba moli: A = 2 mole, B = x moli liczba moli w stanie równowagi: A + B ⇄ C + D 0,4 x – (2 – 0,4) = x – 1,6 1,6 1,6 W reaktorze o objętości 1 dm3: [A] = 0,4 mol · dm−3 , [B] = (y – 1,6) mol · dm−3 , [C] = [D] = 1,6 mol · dm−3 K=CDAB 1=1,6mol·dm–3·1,6mol·dm–30,4mol·dm–3·(y–1,6)mol·dm–3 y=8 mol·dm–3 i Vr = 1dm ⇒ x = 8 moli 2 p. – zastosowanie poprawnej metody, poprawne wykonanie obliczeń oraz podanie wyniku z właściwą dokładnością i we właściwych jednostkach 1 p. – zastosowanie poprawnej metody i popełnienie błędów rachunkowych prowadzących do błędnego wyniku liczbowego lub popełnienie błędów w działaniach na jednostkach 0 p. – zastosowanie błędnej metody lub brak rozwiązania
Matura z matematyki 2005- poziom podstawowy i rozszerzony czesc I i II Andrzej Kiełbasa tzw. Kiełbasa Fizyka zbiór zadań zakres rozszerzony Lech Falandysz czesc 2 (napewno u pana Włodarczyka) ZESTAWY Jezyk ) Ściągi na mature z polskiego: Żeby mieć 160 pkt wystarczyło napisać mature z matmy i anglika na 5. Stara matura z matmy gdzie
Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura maj 2011 zadanie 5 Rozwiązanie równania x(x+3)−49=x(x−4) należy do przedziału:Rozwiązanie równania x(x+3)−49=x(x−4) należy do przedziału:Chcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura maj 2011 zadanie 6 Najmniejszą liczbą całkowitą należącą do zbioru rozwiązań nierówności 3/8+x/6Następny wpis Matura maj 2011 zadanie 4 Układ równań {4x+2y=106x+ay=15 ma nieskończenie wiele rozwiązań, jeśli:
W graniastosłupie prawidłowym czworokątnym ABCDEFGH przekątna AC podstawy ma długość 4. Kąt ACE jest równy 60°. Oblicz objętość ostrosłupa ABCDE
{"payload":{"allShortcutsEnabled":false,"fileTree":{"dzialy":{"items":[{"name":"images","path":"dzialy/images","contentType":"directory"},{"name":"zadania_arkusze
. 321 604 353 451 207 130 593 356
matura maj 2011 zad 5